CURVILIANEAR MOTION OF AN ELLIPSOIDAL BUBBLE

A, G, Petrov

The Lagrange equations are used to investigate the curvilinear motion of an ellipsoidal
bubble, At a small inclination of the minor axis of the ellipsoid to the vertical, the el-
lipsoid begins to oscillate about the equilibrium position and its trajectory begins to
swing. Analytic expressions are presented for the oscillation frequency and for the ratio
of the swing amplitude to the amplitude of the oscillations of the ellipsoid. It is assumed
that the bubble has the form of an axially symmetrical ellipsoid [1].

Let-a Cartesian coordinate system whose axes x,, X,, and x, are directed parallel to the principal
axes of the ellipsoid be connected with an immobile coordinate system y,, y,, and y; by the relation

z; = Ay Ay, = cosg, Ay, =sing, Ay =0
Ay = —sing cosd, 4y, = cos ¢ cosl, Ay = sinb 1)
Ag = sin geosh, Az = —cospsind, Ay = cosb

Summation over repeated indices is assumed throughout; Ajj is an orthogonal matrix, 6 is the Euler
angle between the axes x; and y;, and ¢ is the angle between the line of nodes and the y; axis. By virtue of
the symmetry of the ellipsoid with respect to the x4 axis, it can be assumed that the x; axis lies in the
horizontal plane y;y, and coincides with the line of nodes.

Let yi and x{ be the components of the velocity of the center of the ellipsoid in the immobile and
mobile coordinate systems, respectively. Knowing the Euler angle, we can express x;°in terms of yj-and
conversely,

x' = Ay, yi = Azxi (2)

Since the moment of inertia of the ellipsoid about the x, axis is equal to zero, it can be assumed that
the angular-velocity vector is perpendicular to the x; axis, The square of the angular velocity is equal to
02 + sin®6 @2, The kinetic energy T of the liquid in which the rotating and deforming ellipsoid moves is
equal to [1, 2]

T =To+T,, 2T;=M\z" +I¢?sin®0, 2T,= 10"} [,a”

g _ Mbmp {—yB _ 4mp 5 yB
by =hy = 3 1 1+ yB ’ hy = 3 ! 1—yB (3)
4xpl® (3yB — 1))

\ T 15y [2—@ByB—1) (1 202)]
B=1—aarcotga, y=1+a% a/Yitai=1l/]

Here [; and I, are the lengths of the minor and major axes of the ellipsoid, ! is the radius of the
sphere with equivalent volume (13 = 1,2 3), and Iaaf‘z is that part of the kinetic energy which is due to the
deformation of the bubble. An analytic expression for I, was derived earlier [1].

If we choose as the system of generalized coordinates q; =yj, ds = 0, g5 = ¢, ¢g = @, then the motion
of the ellipsoidal bubble will be described by the following system of equations [1]:
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dt 94 dq; 2 oq
1, i=3 {4)
L=T0+T1-—GS, 631—{0, l=/=3
’/s .t
S=2nzz_y;,—(1+—°‘_-1n-1il@’_) (=126
als v a

2T, = Myi'yi + (hy — M) Agdyyiy; + [9™ sin® 6
E=Eyy + (E;— E,) AyAyyiyy + E, (07 4 ¢?sin®0) + Eyo?
(hi=1,273)
Here E is the energy dissipation, which in the case of large Reynolds numbers R is calculated in
terms of the velocity-field potential [1].

The stationary solution of equations (4), corresponding to a vertical rise of the bubble with constant
velocity (yy, ¥, 6, ¢ are equal to zero, @ = ;) was obtained earlier [1].

At a small deviation of the generalized coordinates from their equilibrium values, damped oscilla-
tions will take place,

Estimates show that, in order of magnitude, the damping time exceeds the period of the oscillations
by R times, Therefore, the processes occurring in times much shorter than the damping time can be de-
scribed by the Lagrange equation without allowance for the viscous terms

& g7 ag, =0 )

The first four coordinates are cyclic, as a result of which we have the angular-momentum conserva-
tion law and three momentum conservation laws’

I (P. 8in20 = M, ;\liyi. + (7»3 —_ }\41) Asi A3]y] = Pi (6)

The immobile system of coordinates can always be chosen such that the momentum vector P is
directed along the y; axis, so that we can put Pj = Pdy;. Solving the system (6) with respect to y{ and ¢’,
we obtain

yy = P (Ag™0 — A7V sing sin® cosB, gy = P (Ag7l — A1) cosg sinf cosh
ys = P (hy7! c0s%0 - A7t sin®0), ¢ = M/(I sin%6) 7
Given P and M, the system (5) is equivalent to a dynamic system with kinetic energy T, and potential
energy V equal to

V =68 + 1Yy (Piys - M@) =68 -/, P2 (A, cos?® + A,~1 5in) - M2 (2[sin?0) "

Thus, the equations of motion are

d 9Ty oV d T, _
at o0 8’ i o = oz To—1) 9

At small deviations of 6§ and « from their equilibrium values, Eqgs. (7) and (9) become linearized

v =POAg  — A Ysing,  yy = PO —A Y cosp

ys =P, Gl =M, 107= 30 PPt A, (10)
“ a P M2
L0 Z“a_a‘<°S+ s +'2162)

The rate of rise of the bubble u = y; is determined from the balance between the Archimedes force
and the viscous-resistance force. The last equation of (10) determines the deviation of the degree of de-
formation from the equilibrium value. The corresponding formulas for the deformation frequency Qqy were
obtained earlier [1]. At M = 0, the next to the last equation in (10) shows that 6 oscillates at a frequency
Qg . Since @'= 0 in this case, the bubble-motion trajectory is a plane curve, and it can be assumed that
¢ = 0. Thus, equations (10) have the following solution:
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12 \ W 1 o — dy = Ag cos (Qu £-+7), 8 = 0, sin (Q?)
Uy
\ . \{\ vs = 10,Y cos (Qut), y, =0
0 T (hs— M) s o (e—M)I 11
o ) \ y‘ Qo=u T:’ . YE= Mhal? an
10
A \ / It follows from (11) that the horizontal displacement of the center
" / \ \. p of the ellipsoid y, leads in phase, by n /2, the inclination angle of the
) 7 2 \é ,>”’ minor axis of the ellipsoid. If M = 0, then there exists a solution of (10)
& V7 e at which 6 - = 0 and @ = 0, the ellipsoid moving along a helical line with
, ] amplitude 16,Y and rotation frequency Q4.
4 8 ¥

The motion of a solid in an unbounded ideal incompressible liquid
Fig. 1 was investigated by many scientists, including Chaplygin, Lyapunov,
Kirchhoff, Clebsch, and others. Formulas (5)-(10) agree with the corre-
sponding results given in the monographs [2-4].

The diagram shows plots of the functions x = 15/14, u/y,, /9, against the dimensionless radius
of the equivalent-volume sphere & = 1/1;. At a small degree of deformation, x — 1<« 1, the corresponding
functions take the form

- g8 v B Q  2V3 Q  2VY7
=T T T 9 o gh 9 gh
15/, ov? s2g o
)72—"_E =" 3 05= ’ u05= * QO='——
2880 V7 pg? p2v IS

It is seen from the figure that the rate of rise of the bubble has at the point £ = 3.84 a maximum
equal to 0.6005, and the frequencies 90_, and Qg coincide in order of magnitude with the frequency of the
capillary oscillations of a sphere of radius I . The function Y(£) increases rapidly with increasing dimen-
sion of the bubble and, therefore, for a large bubble relatively small deviations of the ellipsoid axis from
the vertical cause large horizontal displacements of the center of the ellipsoid.

It should be noted that the results are valid at a large Reynolds number and, on the other hand, the
degree of deformation of the ellipsoid ¥ should not exceed approximately five, for otherwise the approxima-
tion of the potential flow-around is not valid [5]. The dimensionless radius of the bubble must therefore
satisfy the following conditions:
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